MALAYSIAN ASTRONOMY OLYMPIAD 2019

Reading Material

Important mathematical concepts and skills: -

- 1. Algebra
- 2. Trigonometry & circle
- 3. Vector analysis
- 4. Derivation and integration
- 5. Indices and logarithm
- 6. Conic sections

Important basic understanding of physics required:-

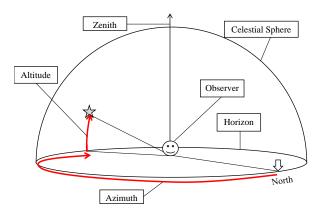
- 1. Classical mechanics
- 2. Wave and optics
- 3. Thermodynamics

These concepts and skills will be applied a lot in understanding astronomy and astrophysics and answering the questions.

......

POSITION AND TIME

Angular distance: Measures of apparent distance between two point in the sky as observed by an observer in unit degree.

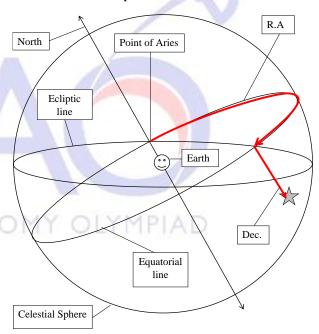

Horizon: The line at which the Earth's surface and the sky appear to meet.

Azimuth: measures of angular distance in degree, from 0 to 360 starting from the north, eastward along the horizon.

Altitude: Measures of angular height of a point in the sky, from the closest point on the horizon.

Horizontal coordinate system: coordinate system that applies the altitude-azimuth coordinates

Equatorial coordinate system: Coordinate system that consists of the R.A and Dec coordinates.



Point of Aries: the point where the equatorial line crosses the ecliptic line where the ecliptic line moves from the southern hemisphere to the northern hemisphere of the sky.

Equatorial Line: line that divides the sky into northern and southern hemispheres. It is positioned along the equi-distance position from the north celestial pole and the south celestial pole.

Right-ascension (**R.A.**): Measures of distance from 0 Hour to 24 Hour from the Point of Aries, eastward along the equatorial line.

Declination (Dec.): Measures of angular distance from 0o to 90o from the equatorial line to the point in the sky. (-) symbol denotes the objects that are in the southern hemisphere.

Parallax: The apparent motion of a relatively close object to a more distant background as the location of the observer's location.

$$distance = baseline \times \frac{57.3^{\circ}}{parallax}$$

Law of sines and cosines (+ cyclic change)

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$
$$c^2 = a^2 + b^2 - 2ab \cos \gamma$$

Spherical law of sines and cosines (+cyclic change)

$$\frac{\sin \alpha}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}$$

 $\cos c = \cos a \cos b + \sin a \sin b \cos \gamma$

Paralaksinis trikampis: spherical triangle, consists of zenith Z, celestial pole P + given star S, ZP = 90 - ϕ (ϕ - latitude), PS = 90 - δ (δ - declination), ZS = z (z- zenith distance), angle ZPS is hour angle t (measured from south clockwise), angle SZP is 180 - A (A- azimuth, measured from south clockwise); it provides transformation between azimuthal (A,z) and equatorial coordinate system (t, δ) resp. (α , δ) where $\alpha = \theta - t$ (θ - sidereal time, α measured from vernal equinox point counter-clockwise) - just use spherical law of sines and cosines. The equation of time = t_{app} - t_m (t_{app} - apparent solar time, t_m - mean solar time).

Precession: period approx. 26000 y, vernal equinox point moves in the opposite direction than right ascension increases.

Aberration: $\operatorname{tg} \alpha \approx \alpha = v_{\perp}/c$, v_{\perp} is the component of velocity perpendicular to coming rays. Refraction: near horizon approximately 35.4'

Astronomical Unit, AU: Earth-Sun distance= 149 million Km.

Parsec, Pc: the distance at which the parallax is exactly 1 arc-second, 206,000 AU.

Universal time, UT: the standard time in the time zone of 0° longitude.

Epoch. 2000: the measurement of star's position with date and time relative to which a computer's clock and timestamp values are determined. epoch 2000.0 begins at 1200 UTC on January 1, 2000.

Julian Date: the number of elapsed days since the beginning of a cycle of 7,980 years invented by Joseph Scaliger in 1583. The starting point for the first Julian cycle began on January 1, 4713 B.C.

STAR'S LIGHT AND SPECTRUM

Magnitude: logarithmic scale of the brightness of the star

Apparent Magnitude: the magnitude of the star as seen by the observer

Absolute Magnitude: the magnitude of the star as observed from 10pc away

Luminosity, *l*: The total amount of energy that a star puts out as light per second.

Flux, ρ : brightness, energy of the star emitted per unit area.

$$\rho \propto l \cdot R^2$$

Where *R* is distance.

Intensity Ratio

$$\frac{I_A}{I_B} = 2.512^{(M_B - M_A)}$$

Where I=star's intensity; M=star's absolute magnitude.

Luminosity of a star

$$L \propto R \cdot T$$

Where L= luminosity; R= radius; T= surface temperature.

Pogson's Equation

$$m_1 - m_2 = 5 \log \frac{I_1}{I_2}$$

$$m - M = 5 \log R - 5$$

Where m=apparent magnitude; M= absolute magnitude; R=distance from observer

Wien's Law

$$\lambda_{max} = \frac{2.9}{T}$$

Where λ_{max} = the peak wavelength of the emitted light from a black body; T= star's temperature.

Stefan's law

$$\rho = \sigma T^4$$

Stefan-Boltzman Law

$$l = 4\pi r^2 \sigma T^4$$

Where $\sigma = 5.67 \times 10^{-8} \text{W/m}^2 \cdot \text{K}^4$

Spectral classification: (W- Wolf-Rayet stars) Oh Be A Fine Girl and Kiss Me Like That! (Ysubstellar objects)

Luminosity classes: **0** - hypergiants, **I** - supergiants, **II** - bright giants, **III** - normal giants, **IV** - subgiants,

V - mainsequence stars, **VI** - subdwarfs, **VII** - white dwarfs (Sun is G2Vstar).

Chandrasekhar limit: (between white dwarf and neutronstar) $1.4 M_{\odot}$,

TOV limit: (between neutron star and black hole) $1.5-3~M_{\odot}$

Doppler effect: motion-induced change in the observed wavelength (or frequency).

$$\frac{\lambda_{apparent}}{\lambda_{true}} = \frac{f_{apparent}}{f_{true}} = 1 + \frac{v_{recession}}{v_{light}}$$

Where λ =wavelength; f= frequency; v = speed

Redshift, Z: longer wavelength as observed of the light emitted from the source that is moving away from the observer.

$$Z = \frac{\Delta \lambda}{\lambda_o}$$

Where $\Delta \lambda$ = wavelength shift; original wavelength

Kirchhoff's Law

- 1. A luminous solid or liquid, or a sufficiently dense gas, emits light of all wavelengths and so produces a continuous spectrum;
- 2. A low- density, hot gas emits light whose spectrum consists of a series of bright emission lines that are characteristic of the chemical composition of the gas;
- 3. A cool, thin gas absorbs certain wavelengths from a continuous spectrum, leaving dark absorption lines in their place, superimposed on the continuous spectrum.

Energy-frequency relation

$$E = hf$$

Where E= photon energy; h= Planck's constant= 6.63×10^{-34} Js; f= frequency.

Energy during Electron transitions in the hydrogen atom

$$\Delta E = R \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$

Where R \approx 13.6eV, ΔE is the energy absorbed by transition from *m*-th to *n*-th level (m= 1- Lyman, m = 2- Balmer, m= 3- Paschen)

Ideal gas

$$pV = nRT$$
$$U = \frac{fNkT}{2}$$

Where p = pressure of gas, V = volume of gas, n = no. of mol., T = temperature of gas

$$v_{RMS} = \sqrt{\frac{3kT}{M}}$$

$$v_{prob} = \sqrt{\frac{2kT}{M}}$$

Where m = mass

TELESCOPE & INSTRUMENTATION

Angular resolution: the ability of a telescope to resolve the smallest angular distance between two objects.

$$\Delta\theta = \frac{1.22\lambda}{D}$$

Where $\Delta\theta$ = angular resolution (rad); D= telescope's aperture (m)

F-ratio of a telescope

$$Focal\ ratio = \frac{f}{d}$$

Where f = f focal length; d = t telescope's aperture

Magnification, M

$$M = \frac{f_o}{f_e}$$

Where f_o = focal length of objective lens/mirror; f_e = focal length of eyepiece used.

Light-gathering power, LGP

$$LGP \propto d^2$$

Where d= telescope's aperture

GRAVITY & PLANETARY MOTION

Gravitational acceleration, g

$$g = \frac{Gm_1m_2}{R^2}$$

Where G=gravitational constant= $6.67 \times 10^{-11} \text{Nm}^{-2} \text{kg}^{-2}$; m= mass; R= distance between the two bodies.

$$E_{pot} = -\frac{Gm_1m_2}{r}$$

$$E_{tot} = -\frac{Gm_1m_2}{2a}$$

Escape velocity, ve

$$v_e = \sqrt{\frac{2GM}{R}}$$

Where *M*=mass of main object

Orbital velocity, parabolic orbit and elliptical orbit

$$v_{para} = \sqrt{\frac{GM}{R}}$$

$$v_{ell} = \sqrt{GM\left(\frac{2}{R} - \frac{1}{a}\right)}$$

Kepler's law of planetary motion

- 1. Planet orbits around the sun in an elliptical orbit, with the centre of mass located at one of the focus;
- 2. An imaginary line connecting the Sun to the planet sweeps out equal areas of the ellipse in equal intervals of time.
- 3. The square of the orbital period of the planet is directly proportional to the cube of the semi-major axis.

$$\frac{(a_1 + a_2)^3}{P^2} = \frac{G(m_1 + m_2)}{4\pi^2}$$

Where P= orbital period (Earth years); a=semi-major axis (A.U); m= mass (solar units).

Schwarschild radius

$$R_s = \frac{2GM}{c^2}$$

Where c =speed of light